

HashFS

[image: version] [https://pypi.python.org/pypi/hashfs/] [image: travis] [https://travis-ci.org/dgilland/hashfs] [image: coveralls] [https://coveralls.io/r/dgilland/hashfs] [image: license] [https://pypi.python.org/pypi/hashfs/]

HashFS is a content-addressable file management system. What does that mean? Simply, that HashFS manages a directory where files are saved based on the file’s hash.

Typical use cases for this kind of system are ones where:

	Files are written once and never change (e.g. image storage).

	It’s desirable to have no duplicate files (e.g. user uploads).

	File metadata is stored elsewhere (e.g. in a database).

Features

	Files are stored once and never duplicated.

	Uses an efficient folder structure optimized for a large number of files. File paths are based on the content hash and are nested based on the first n number of characters.

	Can save files from local file paths or readable objects (open file handlers, IO buffers, etc).

	Able to repair the root folder by reindexing all files. Useful if the hashing algorithm or folder structure options change or to initialize existing files.

	Supports any hashing algorithm available via hashlib.new.

	Python 2.7+/3.3+ compatible.

Links

	Project: https://github.com/dgilland/hashfs

	Documentation: http://hashfs.readthedocs.org

	PyPI: https://pypi.python.org/pypi/hashfs/

	TravisCI: https://travis-ci.org/dgilland/hashfs

Quickstart

Install using pip:

pip install hashfs

Initialization

from hashfs import HashFS

Designate a root folder for HashFS. If the folder doesn’t already exist, it will be created.

Set the `depth` to the number of subfolders the file's hash should be split when saving.
Set the `width` to the desired width of each subfolder.
fs = HashFS('temp_hashfs', depth=4, width=1, algorithm='sha256')

With depth=4 and width=1, files will be saved in the following pattern:
temp_hashfs/a/b/c/d/efghijklmnopqrstuvwxyz

With depth=3 and width=2, files will be saved in the following pattern:
temp_hashfs/ab/cd/ef/ghijklmnopqrstuvwxyz

NOTE: The algorithm value should be a valid string argument to hashlib.new().

Basic Usage

HashFS supports basic file storage, retrieval, and removal as well as some more advanced features like file repair.

Storing Content

Add content to the folder using either readable objects (e.g. StringIO) or file paths (e.g. 'a/path/to/some/file').

from io import StringIO

some_content = StringIO('some content')

address = fs.put(some_content)

Or if you'd like to save the file with an extension...
address = fs.put(some_content, '.txt')

The id of the file (i.e. the hexdigest of its contents).
address.id

The absolute path where the file was saved.
address.abspath

The path relative to fs.root.
address.relpath

Whether the file previously existed.
address.is_duplicate

Retrieving File Address

Get a file’s HashAddress by address ID or path. This address would be identical to the address returned by put().

assert fs.get(address.id) == address
assert fs.get(address.relpath) == address
assert fs.get(address.abspath) == address
assert fs.get('invalid') is None

Retrieving Content

Get a BufferedReader handler for an existing file by address ID or path.

fileio = fs.open(address.id)

Or using the full path...
fileio = fs.open(address.abspath)

Or using a path relative to fs.root
fileio = fs.open(address.relpath)

NOTE: When getting a file that was saved with an extension, it’s not necessary to supply the extension. Extensions are ignored when looking for a file based on the ID or path.

Removing Content

Delete a file by address ID or path.

fs.delete(address.id)
fs.delete(address.abspath)
fs.delete(address.relpath)

NOTE: When a file is deleted, any parent directories above the file will also be deleted if they are empty directories.

Advanced Usage

Below are some of the more advanced features of HashFS.

Repairing Files

The HashFS files may not always be in sync with it’s depth, width, or algorithm settings (e.g. if HashFS takes ownership of a directory that wasn’t previously stored using content hashes or if the HashFS settings change). These files can be easily reindexed using repair().

repaired = fs.repair()

Or if you want to drop file extensions...
repaired = fs.repair(extensions=False)

WARNING: It’s recommended that a backup of the directory be made before repairing just in case something goes wrong.

Walking Corrupted Files

Instead of actually repairing the files, you can iterate over them for custom processing.

for corrupted_path, expected_address in fs.corrupted():
 # do something

WARNING: HashFS.corrupted() is a generator so be aware that modifying the file system while iterating could have unexpected results.

Walking All Files

Iterate over files.

for file in fs.files():
 # do something

Or using the class' iter method...
for file in fs:
 # do something

Iterate over folders that contain files (i.e. ignore the nested subfolders that only contain folders).

for folder in fs.folders():
 # do something

Computing Size

Compute the size in bytes of all files in the root directory.

total_bytes = fs.size()

Count the total number of files.

total_files = fs.count()

Or via len()...
total_files = len(fs)

For more details, please see the full documentation at http://hashfs.readthedocs.org.

Guide

	Installation

	API Reference

Project Info

	License

	Versioning

	Changelog

	Authors

	Contributing

Indices and Tables

	Index

	Module Index

	Search Page

Installation

hashfs requires Python >= 2.7 or >= 3.3.

To install from PyPI [https://pypi.python.org/pypi/hashfs]:

pip install hashfs

API Reference

HashFS is a content-addressable file management system. What does that mean?
Simply, that HashFS manages a directory where files are saved based on the
file’s hash.

Typical use cases for this kind of system are ones where:

	Files are written once and never change (e.g. image storage).

	It’s desirable to have no duplicate files (e.g. user uploads).

	File metadata is stored elsewhere (e.g. in a database).

	
class hashfs.HashFS(root, depth=4, width=1, algorithm='sha256', fmode=436, dmode=493)

	Content addressable file manager.

	
root

	str – Directory path used as root of storage space.

	
depth

	int, optional – Depth of subfolders to create when saving a
file.

	
width

	int, optional – Width of each subfolder to create when saving a
file.

	
algorithm

	str – Hash algorithm to use when computing file hash.
Algorithm should be available in hashlib module. Defaults to
'sha256'.

	
fmode

	int, optional – File mode permission to set when adding files to
directory. Defaults to 0o664 which allows owner/group to
read/write and everyone else to read.

	
dmode

	int, optional – Directory mode permission to set for
subdirectories. Defaults to 0o755 which allows owner/group to
read/write and everyone else to read and everyone to execute.

	
computehash(stream)

	Compute hash of file using algorithm.

	
corrupted(extensions=True)

	Return generator that yields corrupted files as (path, address)
where path is the path of the corrupted file and address is
the HashAddress of the expected location.

	
count()

	Return count of the number of files in the root directory.

	
delete(file)

	Delete file using id or path. Remove any empty directories after
deleting. No exception is raised if file doesn’t exist.

	Parameters

	file (str) – Address ID or path of file.

	
exists(file)

	Check whether a given file id or path exists on disk.

	
files()

	Return generator that yields all files in the root
directory.

	
folders()

	Return generator that yields all folders in the root
directory that contain files.

	
get(file)

	Return HashAdress from given id or path. If file does not
refer to a valid file, then None is returned.

	Parameters

	file (str) – Address ID or path of file.

	Returns

	File’s hash address.

	Return type

	HashAddress

	
haspath(path)

	Return whether path is a subdirectory of the root
directory.

	
idpath(id, extension='')

	Build the file path for a given hash id. Optionally, append a
file extension.

	
makepath(path)

	Physically create the folder path on disk.

	
open(file, mode='rb')

	Return open buffer object from given id or path.

	Parameters

	
	file (str) – Address ID or path of file.

	mode (str, optional) – Mode to open file in. Defaults to 'rb'.

	Returns

	An io buffer dependent on the mode.

	Return type

	Buffer

	Raises

	IOError – If file doesn’t exist.

	
put(file, extension=None)

	Store contents of file on disk using its content hash for the
address.

	Parameters

	
	file (mixed) – Readable object or path to file.

	extension (str, optional) – Optional extension to append to file
when saving.

	Returns

	File’s hash address.

	Return type

	HashAddress

	
realpath(file)

	Attempt to determine the real path of a file id or path through
successive checking of candidate paths. If the real path is stored with
an extension, the path is considered a match if the basename matches
the expected file path of the id.

	
relpath(path)

	Return path relative to the root directory.

	
remove_empty(subpath)

	Successively remove all empty folders starting with subpath and
proceeding “up” through directory tree until reaching the root
folder.

	
repair(extensions=True)

	Repair any file locations whose content address doesn’t match it’s
file path.

	
shard(id)

	Shard content ID into subfolders.

	
size()

	Return the total size in bytes of all files in the root
directory.

	
unshard(path)

	Unshard path to determine hash value.

	
class hashfs.HashAddress

	File address containing file’s path on disk and it’s content hash ID.

	
id

	str – Hash ID (hexdigest) of file contents.

	
relpath

	str – Relative path location to HashFS.root.

	
abspath

	str – Absoluate path location of file on disk.

	
is_duplicate

	boolean, optional – Whether the hash address created was
a duplicate of a previously existing file. Can only be True
after a put operation. Defaults to False.

License

The MIT License (MIT)

Copyright (c) 2015, Derrick Gilland

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Versioning

This project follows Semantic Versioning [http://semver.org/] with the following caveats:

	Only the public API (i.e. the objects imported into the hashfs module) will maintain backwards compatibility between MINOR version bumps.

	Objects within any other parts of the library are not guaranteed to not break between MINOR version bumps.

With that in mind, it is recommended to only use or import objects from the main module, hashfs.

Changelog

v0.7.1 (2018-10-13)

	Replace usage of distutils.dir_util.mkpath with os.path.makedirs.

v0.7.0 (2016-04-19)

	Use shutil.move instead of shutil.copy to move temporary file created during put operation to HashFS directory.

v0.6.0 (2015-10-19)

	Add faster scandir package for iterating over files/folders when platform is Python < 3.5. Scandir implementation was added to os module starting with Python 3.5.

v0.5.0 (2015-07-02)

	Rename private method HashFS.copy to HashFS._copy.

	Add is_duplicate attribute to HashAddress.

	Make HashFS.put() return HashAddress with is_duplicate=True when file with same hash already exists on disk.

v0.4.0 (2015-06-03)

	Add HashFS.size() method that returns the size of all files in bytes.

	Add HashFS.count()/HashFS.__len__() methods that return the count of all files.

	Add HashFS.__iter__() method to support iteration. Proxies to HashFS.files().

	Add HashFS.__contains__() method to support in operator. Proxies to HashFS.exists().

	Don’t create the root directory (if it doesn’t exist) until at least one file has been added.

	Fix HashFS.repair() not using extensions argument properly.

v0.3.0 (2015-06-02)

	Rename HashFS.length parameter/property to width. (breaking change)

v0.2.0 (2015-05-29)

	Rename HashFS.get to HashFS.open. (breaking change)

	Add HashFS.get() method that returns a HashAddress or None given a file ID or path.

v0.1.0 (2015-05-28)

	Add HashFS.get() method that retrieves a reader object given a file ID or path.

	Add HashFS.delete() method that deletes a file ID or path.

	Add HashFS.folders() method that returns the folder paths that directly contain files (i.e. subpaths that only contain folders are ignored).

	Add HashFS.detokenize() method that returns the file ID contained in a file path.

	Add HashFS.repair() method that reindexes any files under root directory whose file path doesn’t not match its tokenized file ID.

	Rename Address classs to HashAddress. (breaking change)

	Rename HashAddress.digest to HashAddress.id. (breaking change)

	Rename HashAddress.path to HashAddress.abspath. (breaking change)

	Add HashAddress.relpath which represents path relative to HashFS.root.

v0.0.1 (2015-05-27)

	First release.

	Add HashFS class.

	Add HashFS.put() method that saves a file path or file-like object by content hash.

	Add HashFS.files() method that returns all files under root directory.

	Add HashFS.exists() which checks either a file hash or file path for existence.

Authors

Lead

	Derrick Gilland, dgilland@gmail.com, dgilland@github [https://github.com/dgilland]

Contributors

None

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/dgilland/hashfs/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” or “help wanted” is open to whoever wants to implement it.

Write Documentation

HashFS could always use more documentation, whether as part of the official HashFS docs, in docstrings, or even on the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/dgilland/hashfs/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions are welcome :)

Get Started!

Ready to contribute? Here’s how to set up hashfs for local development.

	Fork the hashfs repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/hashfs.git

	Install your local copy into a virtualenv. Assuming you have virtualenv installed, this is how you set up your fork for local development:

$ cd hashfs
$ make build

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass linting (PEP8 [http://legacy.python.org/dev/peps/pep-0008/] and pylint) and the tests, including testing other Python versions with tox:

$ make test-full

	Add yourself to AUTHORS.rst.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put your new functionality into a function with a docstring, and add the feature to the README.rst.

	The pull request should work for Python 2.7, 3.3, and 3.4. Check https://travis-ci.org/dgilland/hashfs/pull_requests and make sure that the tests pass for all supported Python versions.

Project CLI

Some useful CLI commands when working on the project are below. NOTE: All commands are run from the root of the project and require make.

make build

Run the clean and install commands.

make build

make install

Install Python dependencies into virtualenv located at env/.

make install

make clean

Remove build/test related temporary files like env/, .tox, .coverage, and __pycache__.

make clean

make test

Run unittests under the virtualenv’s default Python version. Does not test all support Python versions. To test all supported versions, see make test-full.

make test

make test-full

Run unittest and linting for all supported Python versions. NOTE: This will fail if you do not have all Python versions installed on your system. If you are on an Ubuntu based system, the Dead Snakes PPA [https://launchpad.net/~fkrull/+archive/deadsnakes] is a good resource for easily installing multiple Python versions. If for whatever reason you’re unable to have all Python versions on your development machine, note that Travis-CI will run full integration tests on all pull requests.

make test-full

make lint

Run make pylint and make pep8 commands.

make lint

make pylint

Run pylint compliance check on code base.

make pylint

make pep8

Run PEP8 [http://legacy.python.org/dev/peps/pep-0008/] compliance check on code base.

make pep8

make docs

Build documentation to docs/_build/.

make docs

 Python Module Index

 h

 		 	

 		
 h	

 	
 	
 hashfs	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | M
 | O
 | P
 | R
 | S
 | U
 | W

A

 	
 	abspath (hashfs.HashAddress attribute)

 	
 	algorithm (hashfs.HashFS attribute)

C

 	
 	computehash() (hashfs.HashFS method)

 	
 	corrupted() (hashfs.HashFS method)

 	count() (hashfs.HashFS method)

D

 	
 	delete() (hashfs.HashFS method)

 	
 	depth (hashfs.HashFS attribute)

 	dmode (hashfs.HashFS attribute)

E

 	
 	exists() (hashfs.HashFS method)

F

 	
 	files() (hashfs.HashFS method)

 	
 	fmode (hashfs.HashFS attribute)

 	folders() (hashfs.HashFS method)

G

 	
 	get() (hashfs.HashFS method)

H

 	
 	HashAddress (class in hashfs)

 	HashFS (class in hashfs)

 	
 	hashfs (module)

 	haspath() (hashfs.HashFS method)

I

 	
 	id (hashfs.HashAddress attribute)

 	
 	idpath() (hashfs.HashFS method)

 	is_duplicate (hashfs.HashAddress attribute)

M

 	
 	makepath() (hashfs.HashFS method)

O

 	
 	open() (hashfs.HashFS method)

P

 	
 	put() (hashfs.HashFS method)

R

 	
 	realpath() (hashfs.HashFS method)

 	relpath (hashfs.HashAddress attribute)

 	relpath() (hashfs.HashFS method)

 	
 	remove_empty() (hashfs.HashFS method)

 	repair() (hashfs.HashFS method)

 	root (hashfs.HashFS attribute)

S

 	
 	shard() (hashfs.HashFS method)

 	
 	size() (hashfs.HashFS method)

U

 	
 	unshard() (hashfs.HashFS method)

W

 	
 	width (hashfs.HashFS attribute)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 HashFS

 		
 Installation

 		
 API Reference

 		
 License

 		
 Versioning

 		
 Changelog

 		
 v0.7.1 (2018-10-13)

 		
 v0.7.0 (2016-04-19)

 		
 v0.6.0 (2015-10-19)

 		
 v0.5.0 (2015-07-02)

 		
 v0.4.0 (2015-06-03)

 		
 v0.3.0 (2015-06-02)

 		
 v0.2.0 (2015-05-29)

 		
 v0.1.0 (2015-05-28)

 		
 v0.0.1 (2015-05-27)

 		
 Authors

 		
 Lead

 		
 Contributors

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Project CLI

 		
 make build

 		
 make install

 		
 make clean

 		
 make test

 		
 make test-full

 		
 make lint

 		
 make pylint

 		
 make pep8

 		
 make docs

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

